Bài Tập Toán Hình 11 Hình Học Không Gian

Bài Tập Toán Hình 11 Hình Học Không Gian

18.444 lượt xem 3.233 lượt tải

18.444 lượt xem 3.233 lượt tải

Lý thuyết hình học không gian 11

A. Kiến thức cơ bản, hướng dẫn giải các dạng bài tập

- Chứng minh đường thẳng song song với mặt phẳng

- Chứng minh mặt phẳng song song với mặt phảng

- Chứng mình 2 đường thẳng song song

- Chứng minh đường thẳng vuông góc với mặt phẳng

- Chứng minh 2 đường thẳng vuông góc

- Chứng minh 2 mặt phẳng vuông góc

C. Các công thức nâng cao và mở rộng để giải các dạng bài tập

Để được các thầy cô hướng dẫn phương pháp học hình học nói riêng và Toán 11 nói chung, các em học sinh có thể đăng ký khóa học: Học tốt Toán 11

Một số tài liệu các bạn học sinh có thể tham khảo thêm:

Lý thuyết khối đa diện - khối tròn xoay

Tài liệu gồm 255 trang, phân dạng và hướng dẫn giải bài tập các chuyên đề: đại cương hình học không gian, quan hệ song song, quan hệ vuông góc trong không gian; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 2 (đường thẳng và mặt phẳng trong không gian, quan hệ song song) và Hình học 11 chương 3 (vector trong không gian, quan hệ vuông góc); tài liệu cũng phù hợp với các em học sinh lớp 12 bị “mất gốc” hoặc muốn ôn tập lại kiến thức về hình học không gian trong chương trình Toán 11.

1 ĐẠI CƯƠNG HÌNH HỌC KHÔNG GIAN. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 0.1. Tìm giao tuyến của hai mặt phẳng. Dạng 0.2. Tìm thiết diện của hình (H) khi cắt bởi mặt phẳng (P). Dạng 0.3. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 0.4. Tìm thiết diện của hình (H) khi cắt bởi mặt phẳng (P). Dạng 0.5. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui, chứng minh một điểm thuộc một đường thẳng cố định.

2 QUAN HỆ SONG SONG. 1 HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG. A Tóm tắt lý thuyết. 2 ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 2.1. Chứng minh đường thẳng song song với đường thẳng, đường thẳng song song với mặt phẳng. Dạng 2.2. Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và song song với một đường thẳng cho trước. Tính diện tích thiết diện. 3 HAI MẶT PHẲNG THẲNG SONG SONG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. 4 KHỐI LĂNG TRỤ. 5 BÀI TẬP TỔNG HỢP CHƯƠNG II.

3 QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN. 1 ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. 2 HAI MẶT PHẲNG VUÔNG GÓC. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 2.1. Chứng minh hai mặt phẳng vuông góc. 3 GÓC GIỮA HAI ĐƯỜNG THẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 3.1. Tính góc giữa hai đường thẳng. 4 GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. A Góc giữa hai đường thẳng. B Bài tập rèn luyện. Dạng 4.1. Tính góc giữa hai đường thẳng. C Góc giữa đường thẳng và mặt phẳng. Dạng 4.2. Xác định và tính góc giữa đường thẳng và mặt phẳng. D Bài tập rèn luyện. E Góc giữa hai mặt phẳng. Dạng 4.3. Tính góc giữa hai mặt phẳng. F Bài tập rèn luyện. 5 KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG. A Phương pháp giải toán. B Bài tập mẫu. Dạng 5.1. Tính khoảng cách nhờ tính chất của tứ diện vuông. 6 HAI ĐƯỜNG THẲNG CHÉO NHAU. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 6.1. Tính khoảng cách giữa hai đường thẳng chéo nhau. Dạng 6.2. Xác định đường vuông góc chung.

: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên

Hình học không gian là một dạng toán quan trọng, tuy nhiên đây là một phạm trù khá thử thách đối với rất nhiều các bạn học sinh. Để nắm vững kiến thức này, các em học sinh hãy cùng VUIHOC ôn lại vững phần lý thuyết và cách giải các dạng bài tập từ cơ bản đến nâng cao nhé!

Hình học không gian được biết là thuộc nhánh thuộc hình học nghiên cứu các đối tượng trong không gian ba chiều Euclid.

Bên cạnh đó, hình học khối tích (Stereometry) nghiên cứu các phép tính về thể tích của nhiều khối đặc khác nhau (các khối trong không gian 3 chiều) như: thể tích khối lăng trụ, khối chóp, hình cụt, các khối giới hạn bởi mặt cầu, các đa diện, hình trụ tròn, hình nón.

Các chủ đề chính trong hình học không gian gồm có: góc khối, hình lập phương, hình hộp chữ nhật, tứ diện và các loại hình chóp, hình lăng trụ, mặt cầu, quan hệ giữa mặt phẳng và đường thẳng,...

Nắm vững lý thuyết hình học không gian

Khi luyện đề, các em học sinh cần lưu ý những điều sau:

Nên chú ý các ý trong đề bài vì bỏ sót ý sẽ dần đến không hoàn thành câu hỏi.

Khi bài cho dữ liệu “Cho hình chóp đều cạnh a”. Trong đầu chúng ta cần phải nghĩ ngay đến các kiến thức liên quan như:  “chân đường cao trùng với đáy”; “các cạnh bằng nhau”, “ các mặt bên bằng nhau”,…

Nếu trong bài có cho “mặt bên là tam giác cân”, lúc này học sinh cần sử dụng kiến thức về hình học phẳng để vận dụng. Một tam giác cân thì sẽ có đường cao đồng thời là trung tuyến,…

Cách tốt nhất khi đọc đề, học sinh hãy liệt kê ra tất cả thông tin đề đã cho và yêu cầu của đề. Từ yêu cầu của bài các em sẽ suy ngược lại những kiến thức cần sử dụng.

Luyện sự sáng tạo chính là cách để học tốt hình học không gian. Trong nhiều bài các em sẽ cần phải kẻ thêm hình mà trong bài không hề cho trước.

Khi kẻ thêm đường thẳng, thêm mặt phẳng thì việc giải bài sẽ trở nên dễ dàng hơn. Tuy nhiên điều này cần sự sáng tạo từ các em.

Để có được sự sáng tạo này các em cần làm nhiều dạng bài, tham khảo các cách giải khác nhau. Từ đó các em có thể hình thành nên thói quen tập tư duy vẽ thêm hình khi làm bài tập. Kết hợp các dạng bài với nhau để có được nhiều cách thức giải bài nhanh và hay hơn.

Học sinh cần luyện tập cách nhìn hình để giải nhanh bài tập.

Luyện cách nhìn hình là một trong những bước cơ bản đầu tiên để có thể giỏi hình học không gian.

Chỉ khi bạn có thể nhìn rõ các mặt phẳng, đường thẳng thì mới có thể áp dụng định lý, hệ quả để suy ra cách giải.

Ở bước này các em cần chú ý đến sự liên tưởng của mình. Hãy liên tưởng đến ngôi nhà với các góc, bức tường,… giống như các góc, các đường thẳng và mặt phẳng trong không gian.

Trong hình học quan trọng là sự hình dung, tưởng tượng. Nếu đã thành thục bước này thì các em đã rất tiến bộ và ở phần học vẽ hình tiếp theo sẽ không hề khó.

Biết các cách giải bài tập toán hình học không gian nhanh

Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của hai mặt phẳng:

a) Mặt phẳng (SAC) và mặt phẳng (SBD).

b) Mặt phẳng (SAB) và mặt phẳng (SCD).

c) Mặt phẳng (SAD) và mặt phẳng (SBC)

Tìm giao điểm của của dường thẳng a với một đường thẳng khácb, trong mặt phẳng (P).

Nếu không tìm được đường thẳng đó.

Tìm một mặt phẳng khác (Q) chứa đường thẳng đề bài cho (P).

Tìm giao tuyến b của mặt phẳng đó với mặt phẳng đã cho (P).

A là giao của a và b thì A sẽ là giao của a và (P).

Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Tìm giao điểm của đường thẳng EG và mặt phẳng (ACD).

Ta có G là trọng tâm tam giác BCD; F là trung điểm của CD nên G ∈ BF ⊂ (ABF)

+ E là trung điểm của A B E ∈ (ABF).

+ Chọn mp phụ chứa EG là (ABF).

Giao tuyến của (ACD) và (ABF) là AF

Trong mp(ABF); gọi M là giao điểm của EG và AF.

Giao điểm của EG và mp(ACD) là giao điểm M của EG và AF

Ta cần chứng mình các điểm ấy thuộc hai mặt phẳng riêng biệt.

Cho tứ diện SABC. Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB và LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC và SC lần lượt tại K; I; J. Chứng minh 3 điểm M, I, J thẳng hàng?

M ∈ SB ⇒ M isin; (LMN) ∩ (SBC)  (1)

I ∈ BC ⊂ (SBC) và I ∈ NK ⊂ (LMN)

J ∈ SC ⊂ (SBC) và J ∈ LN ⊂ (LMN)

⇒ M ; I; J thẳng hàng vì cùng thuộc giao tuyến mp (LMN) và (SBC)

Kéo dài giao tuyến đã có, tìm giao điểm với các cạnh của mặt này, tương tự, tìm được các giao tuyến còn lại. Nối thành đường khép kín sẽ có thiết diện ta cần tìm.

Cho tứ diện ABCD; gọi H và K lần lượt là trung điểm của AB và BC. Trên đường thẳng CD lấy điểm M nằm ngoài đoạn CD. Thiết diện của tứ diện cắt bởi mặt phẳng (HKM) là?

Mặt phẳng (BCD) có KM không song song với CD nên gọi L là giao điểm của KM và BD.

Vậy thiết diện là tam giác HKL.

Chứng mình đường thẳng đó: a là giao của hai mặt phẳng (P) và (Q).

Một mặt phẳng đi qua một đường thẳng b cố định.

Khi đó a đi qua I cố định là giao của (P) và b.

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD; Q thuộc cạnh AB sao cho AQ = 2QB; gọi P là trung điểm của AB. Chứng minh GQ // mp(BCD).

Vì G là trọng tâm tam giác ABD nên AG/AM = 2/3    (1)

Điểm Q thuộc AB thỏa mãn: AQ = 2QB nên AQ/AB = 2/3    (2)

Từ (1) và (2) suy ra: AG/AM = AQ/AB

⇒ GQ // BD (định lí Ta-let đảo)

Mặt khác BD nằm trong mặt phẳng (BCD) suy ra GQ // mp(BCD)

Để hiểu hơn về hình học không gian cũng như thành thạo các bài tập giải hình không gian, thầy Tài đã có bài giảng "hack điểm" hình không gian cực hay. Các bạn học sinh cùng xem và học cùng thầy trong video này nhé!

Như vậy, trong bài viết này VUIHOC đã chia sẻ về khái niệm hình học không gian cũng như các dạng toán thường gặp, hơn hết là những cách giải toán dễ hiểu nhất. Hy vọng các em sẽ có thêm những bí quyết và nâng cao kiến thức của mình trong kỳ thi THPTQG sắp tới nhé. Để luyện tập thêm các dạng toán, các em truy cập vào vuihoc.vn và đăng ký khóa học ngay bây giờ nhé!

⭐Bộ Sách Thần Tốc Luyện Đề Toán - Lý - Hóa THPT Có Giải Chi Tiết